Parallelogram Tilings and Jacobi-Perron Algorithm
نویسندگان
چکیده
منابع مشابه
Parallelogram Tilings, Worms, and Finite Orientations
This paper studies properties of tilings of the plane by parallelograms. In particular it is established that in parallelogram tilings using a finite number of shapes all tiles occur in only finitely many orientations.
متن کاملOn the Singularization of the Two-Dimensional Jacobi-Perron Algorithm
2000 AMS Subject Classification: Primary 11K50
متن کاملArithmetic distributions of convergents arising from Jacobi-Perron algorithm
We study the distribution modulo m of the convergents associated with the d-dimensional Jacobi-Perron algorithm for a.e. real numbers in (0, 1) by proving the ergodicity of a skew product of the Jacobi-Perron transformation; this skew product was initially introdued in [6] for regular continued fractions.
متن کاملThe two-dimensional Jacobi-Perron Algorithm is S-equivalent to the Podsypanin Algorithm
We show that the two-dimensional Podsypanin Algorithm and the two-dimensional Jacobi-Perron Algorithm belong to the same class of Sexpansions. In particular, we show that each step of the conversion process described in Schratzberger 2007 [16], based on the techniques of Singularization and Insertion, terminates after finitely many states a.e.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Tokyo Journal of Mathematics
سال: 1994
ISSN: 0387-3870
DOI: 10.3836/tjm/1270128186